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Abstract 

 

Modern permanent magnets gain most of their intrinsic stability against demagnetizing 

fields through incorporation of rare-earth elements in their structure. This process, 

however, often results in the formation of complex crystal structures that typically place 

rare-earth atoms of the same type in inequivalent atomic environments, hindering a 

complete understanding of the rare-earth role. Using resonant diffraction of circularly 

polarized x rays we directly probed the magnetic moment reversal of each of the two 

inequivalent Nd rare-earth sites in a Neodymium-Iron-Boron magnet. The results show 

that the magnetic hardness of the current best permanent magnet has its atomic origins 

predominately at one of the two inequivalent Nd crystal sites. 
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Introduction 

Magnetic hardness, a key property of permanent magnets, dictates the ability of a 

material to retain its magnetization after a magnetizing field is removed (remanence), or 

under the action of a demagnetizing field (coercivity). Developments in the synthesis of 

artificial, rare-earth (RE)-based permanent magnetic materials in the past two decades 

have yielded large increases in the remanent magnetic flux density compared to that of 

earlier steel and ferrite magnets (1, 2). This has enabled the miniaturization of permanent 

magnets and their subsequent widespread use in a variety of applications. While earlier 

quench-hardened steels gained significant magnetic hardness through the incorporation of 

defects and internal strain, modern magnets achieve much higher coercivities through the 

added intrinsic stability introduced with RE elements. Key to this progress is the fact that 

4f electrons of RE elements, which can carry large orbital angular momentum in a 

partially filled 4f shell configuration, maintain their atomic character upon alloying with 

3d transition metals (TM) (3, 4). The anisotropic charge distribution associated with a 

large orbital angular momentum state of 4f electrons interacts with the crystal electric 

field (CEF) of surrounding charges, favoring a preferred arrangement of the 4f charge 

density with respect to the crystalline axes. Since the spin-orbit interaction promotes 

collinearity of spin and orbital moments, a preferred orientation of the magnetic moment 

relative to the crystalline axis is established. The magneto-crystalline anisotropy (MCA) 

energy involved in disrupting this preferred orientational arrangement provides intrinsic 

stability against demagnetizing fields, resulting in the high coercivity of  RE magnets. 

While the RE component provides most of the MCA responsible for the magnetic 
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hardness, the TM component provides most of the magnetization [e.g., ∼31µB for Fe and 

∼6µB for Nd per formula unit in Nd2Fe14B (5); µB is Bohr magneton.] 

 

Figure 1: Unit cell of Nd2Fe14B. The unit 

cell contains four formula units (68 atoms). 

The two inequivalent Nd crystal sites that 

are the focus of this study are color coded 

(purple and blue). The six Fe inequivalent 

sites are not distinguished. Site notation is 

after Herbst et al. (20). 

 

 

Despite great technological progress, our basic understanding of the atomic origins of 

MCA in these complex structures is limited. We focus here on Nd2Fe14B since it is the 

best permanent magnetic material available today. As shown in Fig. 1, Nd2Fe14B has a 

very large unit cell with two magnetic elements (Fe, Nd) each being present in more than 

one local atomic environment (i.e., inequivalent crystal sites having different 

coordination number or types of neighboring atoms, or a different point symmetry). 

While it is well established from studies of isostructural (Gd,Y)2Fe14B crystals that Fe 

contributions to MCA in Nd2Fe14B favor a [001] easy-axis alignment of the 

magnetization (6, 7) (Y is non-magnetic and Gd has zero orbital angular momentum and 

does not contribute to MCA), Nd contributions to MCA are larger by at least a factor of 

3-4 at ambient and low temperatures (5). Despite Nd dominating the MCA, the relative 

importance of each of the two inequivalent Nd lattice sites in regulating the magnetic 
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hardness of Nd2Fe14B has not yet been determined in a measurement. The determination 

of non-collinear Nd moments from neutron diffraction measurements is a challenge as 

only two of the sixteen magnetic atoms per formula unit are rare earths, and the magnetic 

contribution is only a fraction of the total neutron scattered intensity (5, 8). Another probe 

of magnetism is x-ray magnetic circular dichroism (XMCD), which has the advantage of 

separating magnetic contributions by element type (9-11). Such measurements were very 

valuable in probing the minority Nd sublattice outside the overwhelming magnetic 

background of the majority Fe sublattice. For example, they showed that the average Nd 

atom undergoes a much larger spin-reorientation than the average Fe atom below T~130 

K, resulting in a complex non-collinear magnetic structure yet to be explained by theory 

[12,13]. XMCD, however, an absorption technique, cannot separate the magnetic 

contributions of Nd (or Fe) atoms in inequivalent lattice sites since small chemical shifts 

of site-specific absorption thresholds result in overlapping absorption spectra.  

 

As shown below, a new experimental x-ray scattering approach allows separation of the 

contributions of the inequivalent Nd crystal sites to magnetic hardness. The 

measurements show that whereas one set of Nd sites strongly favors magnetic alignment 

along the [001] direction dominating the intrinsic MCA of Nd2Fe14B, the other set in fact 

reduces the intrinsic stability by favoring the xy-plane. Our conclusions have strong 

implications for the understanding of magnetic hardness in this class of materials.  
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Measurements and results 

Site separation is achieved by exploiting the symmetry properties of the crystal’s space 

group, which determine the relative scattering contributions of inequivalent crystal sites 

to the intensity of symmetry-allowed Bragg reflections. Element-specificity is obtained 

by tuning the x-ray energy to near the Nd L2 resonance (2p1/2 → 5d dipole transition at 

6.722 keV), and resonant diffraction of circularly polarized x-rays is used to yield 

magnetic sensitivity (14, 15). The latter arises because the excited spin-polarized electron 

is sensitive to the exchange splitting of Nd 5d resonant states, which is proportional to the 

Nd 4f magnetic moment (16-18). A differential measurement of the resonantly scattered 

intensity for opposite x-ray helicities 
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Figure 2(a-c) shows room temperature resonant charge and magnetic-sensitive dichroic 

scattered intensities for (110), (220), and (440) Bragg reflections. These reflections probe 

Nd g sites, Nd f sites, and both sites equally, respectively (Table I). The dichroic 

scattering at (110) and (220) reflections probes Nd magnetism in an element- and site-

specific way. There are no magnetic contributions from Fe, since the resonant magnetic 

scattering amplitude fm is practically zero away from element-specific resonances, as 

shown in Fig. 2d (19). 
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Figure 2. Magnetic-sensitive resonant diffraction. 

Resonant diffraction scans through the Nd L2 

absorption edge for selected Bragg reflections (a-c). 

Blue curves correspond to resonant charge 

scattering and red curves are magnetic-sensitive 

scattering. An H=6.0 kOe field is applied along the 

[001] easy axis direction, which is contained in the 

scattering plane, and saturates the sample 

magnetization. The inset in (b) shows the scattering 

reflection geometry with ki and kf incident and 

scattered wavevectors. Panel (d) shows the site-averaged Nd magnetic resonant scattering 

amplitude obtained from XMCD measurements and related Kramers-Krönig transform 

(23).  

 

Element- and site-specific Nd spin reversal curves were then measured through changes 

in the magnetic-sensitive dichroic scattering as an applied field was looped while 

maintaining the selected diffraction condition at a fixed resonant energy that maximizes 

magnetic contrast. These loops are shown in Figure 3, which includes reversal curves for 

inequivalent Nd f and g sites (Fig. 3a), together with site-averaged Nd reversal loops 

independently determined from (440) dichroic scattering, XMCD, and by equally 

weighting site-specific (110) and (220) dichroic scattering loops (Fig. 3b).  
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Figure 3: Site-specific Nd spin reversal 

curves. (a) Site-selective Nd spin-reversal 

loops measured through magnetic-sensitive 

dichroic resonant scattering at (110) and 

(220) Bragg reflections. (b) Site-averaged 

loops, obtained from XMCD 

measurements, (440) dichroic resonant 

scattering, and by averaging the curves in 

panel (a). Loops are normalized to match at 

saturation. The XMCD loop was multiplied 

by -1 (see Fig. S1). The angular dependence of dichroic resonant scattering (19) for spin 

rotation parallel (||) or perpendicular (⊥) to the scattering plane is shown in (c); θ is the 

angle with the z-axis. The perpendicular case gives a pure cosθ dependence for all Bragg 

reflections. Values are normalized to those of 

! 

ˆ m ||[001]. 

 

 

 

Different reversal loops for (110), (220), and (440) diffraction conditions can only result 

from a coherent reversal process. Macroscopic domain nucleation and growth would have 

resulted in equal loops (normalized to saturation value) for (110) and (220) reflections 

due to incoherent superposition of scattering from oppositely oriented magnetic domains. 

This is because the angular dependence of dichroic resonant scattering, which depends on 

the relative orientation of x-ray scattering vectors and magnetic moment direction (19), is 
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nearly the same for (110) and (220) reflections when normalized to its value for 

! 

ˆ m || [001] 

(Fig. 3c).  It follows that the response of Nd magnetic moments to a reversed applied 

field depends on the Nd crystal site. The Nd g site exhibits an ideal easy-axis loop with 

high coercive squareness or hardness while the Nd f site shows magnetically soft 

behavior. Since [001] is the macroscopic magnetic easy-axis, and, since Nd dominates 

the MCA in this material, this result alone indicates that Nd g sites are predominately 

responsible for the intrinsic magnetic hardness of Nd2Fe14B.  

 

We note that kinematically diffracted x-rays penetrate deeper into the sample at (220) 

than (110) Bragg reflections (≈2µm versus 1µm, respectively). However, we can rule out 

near-surface decomposition or impurity phases being responsible for the measured 

differences based on (a) identical normalized fluorescence XMCD loops at (110) and 

(220) incident Bragg angles (Fig. S1), and (b) clean and sharp single-crystal diffraction 

peaks corresponding to the nominal crystal structure of Nd2Fe14B. An intrinsic advantage 

of this method is that magnetization is probed using selected Bragg diffraction 

conditions, so phase-specificity is inherent in addition to element- and site-selectivity. 

 

Discussion 

Changes in dichroic resonant scattering with applied field come from its angular 

dependence, 

! 

[( ˆ k i " ˆ m ) + ( ˆ k f " ˆ m )cos2#], with 

! 

ˆ k 
i
 and 

! 

ˆ k f  incident and scattered wave 

vectors, respectively, 

! 

ˆ m  the magnetic moment direction, and θ the Bragg angle (20). As 

the moments rotate, their orientation with respect to the x-ray scattering vectors changes 

while their magnitude does not.  This angular dependence results in sign reversal upon 



 9 

magnetization reversal and sensitivity to the magnetization component in the scattering 

plane only (Fig. S2). This sensitivity to moment orientation, coupled to site-selectivity 

through choice of diffraction condition, makes this dichroic signal a unique tool for 

studies of magnetization reversal in crystals with inequivalent sites. For low Bragg angle 

(110) and (220) reflections, the angular dependence results in a near cosθ dependence, 

whether the moments rotate in the scattering plane or perpendicular to it (θ is the angle 

with the z-axis, see Fig. 3c) [at low Bragg angles the angular dependence can be 

approximated as 

! 

" ( ˆ k i + ˆ k f ) # ˆ m = mz ].  In this respect, the dichroic scattering loops for 

(110) and (220) reflections, normalized to saturation, can be regarded as conventional 

loops that measure the projection of site-specific moments into the z-axis.  

 

The reversal loops shown in Fig. 3 clearly indicate a preference for the g sites to align 

with the crystal’s z-axis. The high squareness of this site-specific loop indicates 

magnetically hard behavior, where a reversed applied field of H=-600 Oe is needed to 

cause spin reversal. The reversal to the –z direction is sharp, since the spins avoid other 

crystal orientations. The f sites, however, start reversing at very low fields and in fact 

display magnetically soft behavior for H||[001]. Clearly the Fe-Nd exchange field forces 

the spins at f sites to align with the [001] direction at saturation, but their interaction with 

the CEF does not favor z-axis alignment, as verified by theoretical calculations detailed 

below. 

 

The angular dependence of dichroic resonant scattering reveals a non-trivial reversal 

process due to competing anisotropies at inequivalent Nd sites. Since the dichroic 
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scattering signal at (110) and (220) reflections almost vanishes for 

! 

ˆ m "[001] (either in the 

scattering plane or perpendicular to it) (Fig. 3c), a nearly orthogonal arrangement of 

magnetic moments at Nd f and g sites occurs at a reversed applied field H=-200 Oe. At 

this field value the g moments remain along the z direction (due to their stronger coupling 

to the lattice) while the f moments lie in the plane perpendicular to it. This unusual 

reversal must be accompanied by an inhomogeneous arrangement of Fe moments, as they 

couple through Fe-Nd and Fe-Fe direct exchange [Nd-Nd coupling is indirect, and weak 

(13)]. It is likely that the exchange price of such an inhomogeneous Fe/Nd configuration 

limits the extent of f moment rotation past the xy-plane, introducing a “plateau” in the 

(220) loops until the delayed reversal of g moments takes place. We note that a complete 

microscopic picture cannot be obtained from this data alone, since probing the atomic 

details of Fe reversal with this technique is complicated by the presence of six 

inequivalent Fe crystal sites (20).  

 

Our experimental findings are supported by theoretical calculations of the MCA energies 

governing the spin reversal. We have performed numerical and analytical calculations of 

the dependence of the energy on the direction of the magnetic moment at Nd sites. The 

results of both approaches are in good agreement and are presented in Fig. 4. Numerical 

calculations were done for a Nd3+ ion, including the full Coulomb multiplet interaction 

and the 4f spin-orbit coupling. Direct and exchange Coulomb parameters were obtained 

in the Hartree-Fock limit and scaled down to 80% to account for screening effects (21). 

The crystal-field interaction is expanded in terms of spherical tensor operators, 

! 

HCF = Bkq Cq

k( )
i

"
i
, where Bkq are crystal field parameters and the summation is over the 
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electrons of the rare-earth ion. We include terms up to fourth order as higher order terms 

are important only at lower temperatures (13,22).  While the CEF acting on each Nd ion 

has orthorhombic (mm) point symmetry, a screw axis in the tetragonal P42/mnm space 

group causes a sign change of the 

! 

B
n,"2(n=2,4) for equivalent sites in z=0 and z=1/2 

planes (see Fig. 1), subdividing the sites magnetically into f1,2 and g1,2. CEF parameters 

are taken from Yamada et al. (13). Figure 4 shows the change in anisotropy energy for 

the f and g Nd sites as a function of the angle θ between the magnetic moment and the 

[001] axis. The moments are forced to an angle of ϕ=45° with the [100] axis. The red 

squares in Fig. 4 show that the MCA energy of g sites strongly increases as these 

moments are forced away from the z- axis towards the xy-plane (θ=90°). This is always 

the case, independent of the in-plane angle ϕ (Fig. S3), clearly showing that the g sites 

strongly favor a [001] orientation. However, the f sites favor the xy-plane, as their MCA 

energy is minimized at θ=90°. Analytical calculations of the in-plane MCA energy shows 

that f1 and f2 sites prefer [-110] and [110] orientations, respectively (Fig. S3). 

 

Figure 4. Calculated anisotropy energy. The 

anisotropy energy as a function of the angle 

θ between the magnetic moment and the z-

axis. ϕ is in the xy-plane, away from the 

[100] direction. Points and lines correspond 

to numerical and analytical calculations, 

respectively.  
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An alternative, analytical approach is to approximate the angular dependence of the 

anisotropy energy by taking the expectation value of the CEF in the lowest Hund’s rule 

multiplet 

! 

LSJ,M = "J |H
CF
| LSJ,M = "J , thereby assuming a strong molecular field 

along the z-axis. Evaluation using the Racah method gives an anisotropy energy of Ean= 

(K1 sin2θ + K2 sin4θ), where ϕ=45° is assumed and K1 and K2 can be obtained from the 

crystal field parameters 

! 

Bkq  (13).  For the f2 site in the [110] direction (and the f1 site in 

the 

! 

[1 10] direction) the parameters are K1=2.30 and K2=-8.69 meV. From the solid 

curves in Fig. 4 we clearly see a decrease in energy when rotating the spin, indicating that 

the f sites prefer to lie in the xy-plane. For the g1,2 sites, K1+K2 > 0 for all values of ϕ, and 

the magnetic moment prefers to lie along the z-axis. This clearly strengthens the site-

selective z-axis reversal data obtained with dichroic resonant scattering of high coercive 

squareness for g sites and soft magnetic behavior for f sites.  

 

 

 

 

Conclusions 

 

We provide experimental and theoretical evidence that the magnetic hardness of currently 

best permanent magnetic material Nd2Fe14B arises predominately from one of the two 
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inequivalent Nd sites. While one Nd site (g) strongly prefers the [001] direction at 

ambient temperature and dictates the macroscopic easy axis direction, the other Nd site 

(f) (containing half of all the Nd atoms) reduces the intrinsic stability by favoring 

alignment along [110]-type directions. Since the local atomic environments of these 

inequivalent Nd sites are known (20), it may be possible that future permanent magnetic 

materials will make more efficient use of all the RE atoms, rather than half of them, to 

yield further enhancements of magnetic hardness. Clearly these developments rely on a 

detailed understanding of the atomic origins of magneto-crystalline anisotropy in these 

materials. As demonstrated here, progress in this direction can be achieved by the 

combination of site-specific diffraction with the spectroscopic, elemental magnetic 

fingerprints obtained near atomic resonances. The manipulation of structures at the 

atomic level enabled by recent advances in nanotechnology could provide a venue to 

achieve further enhancements in magnetic hardness by tailoring the local atomic 

structure.  
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Table I. Site-specific contributions to Bragg diffraction. Relative percentage 

contributions of inequivalent Nd sites to the scattering amplitude of selected Bragg 

reflections with scattering Q vectors along [110]. Ratios are obtained from site-specific 

structure factors 
  

! 

e
i
r 

Q "
r 
r n

n=1

4

# , where the sum is over the four equivalent Nd sites in the unit 

cell (f or g Wyckoff sites), and ri are their atomic positions.  

Site (110) (220) (440) 
Nd f 3 96.4 48.5 

 Nd g 97 3.6 51.5 
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Supporting Online Material 

Materials and methods 

(i) Experimental details 

Measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source 

on a Nd2Fe14B single crystal grown out of a Nd-rich ternary melt (1,2). The [110] surface 

of the crystal was oriented along the scattering vector. An electromagnet delivered a 

magnetic field (± 6 kOe) along the [001] easy axis direction, which was parallel to the 

sample surface and in the scattering plane. A PZT-driven diamond (111) phase-retarder 

operated in Bragg transmission geometry (3) was used to convert the x-ray polarization 

from linear to circular and to rapidly (1 Hz) switch between opposite x-ray helicities. The 

dichroic diffraction was measured through the Nd L2 resonance using a digital lock-in 

detection scheme that synchronizes the measured x-ray diffracted intensity with the 

helicity modulation of the incoming x-ray beam (4). The Si(111) double-crystal 

monochromator, phase-retarder, and sample’s Bragg angles were tracked to maintain 

their respective diffraction conditions through the resonance energy scans.  XMCD 

measurements were performed concomitantly by measuring the Nd Lβ fluorescence for 

opposite x-ray helicities using energy-dispersive Si-drift diode detectors. All 

measurements were done at ambient temperature. 
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(ii) Dichroic resonant scattering of circularly polarized x-rays 

A differential measurement of resonantly diffracted intensities for opposite x-ray 

helicities removes pure charge resonant scattering and yields charge-magnetic 

interference scattering, which contains information on both magnitude and direction of 

the resonant atom’s magnetic moment. Following Hannon et al. (5), the resonant 

scattering amplitude from a single magnetic ion is given 

by

! 

f = fe (Q,E)( " ˆ # $ % ˆ # ) & ifm (E)( " ˆ # $ ' ˆ # ) % ˆ m , with fe and fm complex charge and magnetic-

sensitive scattering amplitudes, respectively. 

! 

ˆ "  and 

! 

ˆ " #  are incident and scattered 

polarization vectors, respectively, and 

! 

ˆ m  is the magnetic moment direction. The scattered 

intensity from a crystal of magnetic ions is given by the modulus square of the structure 

factor 
  

! 

F(Q,E)
2

= fn
n

" e
i
r 

Q #
r 
r n
2

, where the sum is over all atoms in the unit cell and 

thermal disorder is neglected.  Since reversing x-ray helicity is equivalent to reversing 

magnetization direction, a differential measurement of diffracted intensity for opposite x-

ray helicities 

! 

(I
+
" I

"
) removes pure charge terms (

! 

fe
"
fe , independent of 

! 

ˆ m ) and pure 

magnetic-sensitive terms (

! 

fm
"
fm , quadratic in 

! 

ˆ m ), and includes contributions from 

charge-magnetic interference (CMI) terms only (i.e., 
  

! 

"i A
#
B j fe,i

#
fm, j

i, j
$ e

i
r 

Q %(
r 
r i "

r 
r j ) + c.c.), 

proportional to 

! 

ˆ m  (A and B are polarization factors). Information on the magnitude of the 

resonant atom’s magnetic moment is contained in fm, and information on its direction 

relative to the x-ray polarization vectors is in 

! 

B = ( " ˆ # $ % ˆ # ) & ˆ m . Adding diffracted 

intensities for opposite x-ray helicities removes CMI scattering and practically measures 

resonant charge scattering since 

! 

fm
2

<< fe
2 .  
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An explicit derivation of the angular dependence of dichroic CMI scattering (

! 

A
"
B) for 

our scattering geometry can be obtained from the density matrix formalism of Blume and 

Gibbs (6) for the case of no polarization analysis of the outgoing beam. This involves 

taking traces over matrix products of the form 

! 

ˆ " # $ % ˆ # & [(ˆ " # $ ' ˆ # ) % ˆ m ] , where ρ is the 

density matrix of a circularly polarized beam, and 〈 〉 indicates matrix representation 

using the (σ, π) basis (σ and π are polarization components perpendicular and parallel to 

the scattering plane, respectively). In this representation these matrices are (6, 7): 

  

! 

"
L,R

=
1 miP

c

±iP
c

1

# 

$ 
% 

& 

' 
( 

ˆ ) * + , ˆ * =
1 0

0 ˆ ) k , ˆ k 

# 

$ 
% 

& 

' 
( 

(ˆ ) * + - ˆ * ) , ˆ m =
0 . ˆ ) k , ˆ m 

ˆ k , ˆ m ( ˆ ) k - ˆ k ) , ˆ m 

# 

$ 
% 

& 

' 
( 

. 

Here Pc is the degree of circular polarization.  While π→π’ scattering probes the 

component of magnetization perpendicular to the scattering plane (

! 

( ˆ " k # ˆ k ) $ ˆ m  term), its 

contribution to the trace of the matrix product is helicity independent and cancels in the 

differential measurement of dichroic CMI scattering. This formalism yields 

! 

[( ˆ k i " ˆ m ) + ( ˆ k f " ˆ m )cos2#], with 

! 

ˆ k 
i
 and 

! 

ˆ k f  incident and scattered wave vectors, 

respectively, and θ the Bragg angle.  
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Supporting online figures 

 

Figure S1. XMCD reversal loops measured in 

fluorescence geometry. The incident angles 

are 8.51°, 17.25°, and 36.34° for (110), (220), 

and (440) Bragg reflections at incident x-ray 

energies of 6.730, 6.724, and 6.725 keV, 

respectively. These energies maximize the dichroic scattering signals (Fig. 2), which are 

measured concomitantly (Fig. 3). Loops are normalized to saturation values. The opposite 

sign of XMCD loops relative to those measured in dichroic scattering (Fig. 3) is due to 

opposite signs of real and imaginary parts of fm at selected x-ray energies and to the 

interference between chemical and magnetic resonant contributions (19), which 

modulates the sign of dichroic scattering differently for different Q vectors (structure 

factor effects). 

 



 20 

 

 

Figure S2. Angular dependence of dichroic scattering. The 

cross section results in sign reversal upon reversal of the 

magnetization direction (a) and sensitivity to magnetization 

component in the scattering plane only (b). In (b) the 

sample/magnet assembly was rotated so that the applied field 

remains along z but is perpendicular to the scattering plane. 

 

 

 

 

Figure S3. Anisotropy energy for 

moment alignment in the xy-plane. 

Curves are results from analytical 

calculations. The g sites prefer to 

align with the z-axis, as forcing 

them into the xy-plane raises their 

MCA energy by at least 20 meV. The f1 and f2 sites, however, prefer  [-110] and [110] 

alignment in the xy-plane, respectively, where their MCA energy is lowest (the screw 

axis in the structure causes f1 and f2 sites to prefer orthogonal axis).  

 

 


